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Abstract 

Warm-season precipitation in the Lower Mississippi River Alluvial Valley (LMRAV) is heavily dominated by the rates of 
evapotranspiration and surface heat fluxes and is a primary water resource for agriculture. However, the stochastic nature of 
LMRAV warm-season thunderstorms makes precipitation forecasts challenging. The Weather Research and Forecasting 
Hydrologic (WRF-Hydro) model, coupled with the multi-parameter Noah land surface (Noah-MP) model, has improved estimates 
of important warm-season precipitation process. Given the widespread agriculture and dominance of crop and forested landscapes 
over the region, proper assessment of land use / land cover (LULC) is critical in predicting warm-season precipitation patterns. The 
objective of this study is to quantify simulated latent heat flux sensitivity (important for warm-season precipitation) to temporally 
updated LULC datasets.   Both the model default and annually updated LULC conditions were used to initialize a 16-year WRF-
Hydro simulation from which warm-season latent heat flux estimates were obtained. Annual root mean square difference was 
computed at each gridpoint.  Cluster analysis preprocessed with kernel principal component analysis was used to identify spatial 
RMSD structures that quantified sensitivity to updated LULC conditions.  Results showed the largest impacts occurred directly in 
the LMRAV and for points slightly east and revealed a meteorological link between these regions.   
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1. Introduction 

The Lower Mississippi River Alluvial Valley (LMRAV) is a robust agricultural region in the Southeastern United 
States (U.S.) that relies heavily upon abundant precipitation to ensure adequate availability of water.  While much of 
this water is provided by cool-season synoptic-scale extratropical cyclone events [1], much of the region is still 
sensitive to fluctuations in warm-season precipitation when the growing season is active [2].  This is an important 
issue as precipitation predictability is much more limited during the Southeastern U.S. warm season [3-5] owing to 
limitations in rendering convective processes (which are the primary drivers of warm-season precipitation) in the 
dynamic models used for precipitation forecasting.  Previous studies have specifically addressed limitations in this 
predictability [6,7] using dynamic atmospheric modeling approaches with limited success.  The results in [7] actually 
revealed a negative skill to a support vector machine [8] model trained to predict the onset of warm-season rainfall at 
a lead time of 24 hours, suggesting that forecasting by simple climatology (i.e., a common baseline probability of 
precipitation for all points) yielded better forecasts than the dynamic model.   

The work in [4] revealed that modification in the soil moisture characteristics yielded minimal improvements and 
small ensemble spread in the Weather and Research Forecasting (WRF – [9]) dynamic modeling framework.  In their 
study, they specifically note that a better representation of the land surface-atmosphere interactions is essential if 
warm-season precipitation forecasts are to gain skill.  However, there is little consensus as to the best approach to 
coupling the land-surface component of a numerical modeling system with the atmospheric component [10].   

Currently, the National Oceanic and Atmospheric Administration (NOAA) National Water Model (NWM –[11]) 
is an operational framework based on the WRF hydrologic modeling system (WRF-Hydro) that utilizes precipitation 
and other atmospheric constituents to estimate surface hydrologic conditions in the United States.   The WRF-Hydro 
system utilizes a blend of terrestrial and subsurface hydrologic models with the Noah multi-parameterization (Noah-
MP [12]) land surface model and the WRF gridded pre-processing system.  While limited success has been seen in 
approaching the warm-season rainfall prediction problem from the perspective of the WRF model [5,6], little work 
has investigated the potential improvements in quantifying critical land surface-atmosphere interactions when utilizing 
improved land use/land cover (LULC) input.  One important challenge in this process is that land surface models such 
as the Noah-MP do not directly produce forecasts for precipitation; instead, they portray processes such as surface 
latent heat (LH) flux (essentially evaporative flux) and evapotranspiration that are associated with precipitation 
generation.  The former of these is of particular importance for warm-season precipitation in the Southeast U.S. as it 
is the primary moisture source for convective rainfall events (i.e., thunderstorms).   

The primary objective of this study is to assess the sensitivity of the Noah-MP land surface model’s rendering of 
LH flux in the LMRAV to updates to the LULC input fields during the Southeast U.S. warm season.  Composite 
analyses of LH flux differences between the Noah-MP simulations within WRF-Hydro using annually updated LULC 
and the model default configurations will be formulated using cluster analysis pre-processed by kernel principal 
component analysis (KPCA – [13,14]) to identify the most prevalent spatial patterns.  The outcomes of this work will 
reveal spatial regions and land cover types that were most sensitive to changes in the Noah-MP initialization fields, 
which can help inform future forecast renderings of warm-season precipitation.   

2. Datasets 

Within the framework of WRF-Hydro [11], this study utilized the Noah-MP model [12,15] to estimate LH flux on 
a 1-km grid-spacing (499x499 grid) centered over the LMRAV (Figure 1).  The Noah-MP model [12] is a land-surface 
modeling system that utilizes multiple configuration options for rendering land surface-atmosphere interactions.  Its 
estimates of surface heat fluxes, including LH flux, are highly sensitive to the selection of these configuration options.  
This study used the configuration options from [15] as they have been shown to be appropriate for the LMRAV [16].   

After the initial Noah-MP configuration was established, the study objectives required updating the LULC data 
when initializing the Noah-MP.  Two separate Noah-MP input LULC dataset configurations were tested.  First, the 
default configuration 20-class Moderate Resolution Imaging Spectrometer (MODIS) dataset [17] used in traditional 
WRF simulations was applied, which is based on the most prevalent LULC category at each grid point derived from 
MODIS satellite estimates between 2001-2010.  These data are provided on a 30 arc second latitude/longitude spatial 
grid and were interpolated to a 1 km study grid.   
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Fig. 1. (a) The default MODIS LULC category for each gridpoint used to initialize the default Noah-MP simulations.  (b) Map of gridpoints that 
were altered by the annually updated MODIS LULC data (shaded).   

For the second simulation, updated annual 20-class MODIS data (on the same spatial domain) were fed to the 
model for each simulation year, offering the Noah-MP model more representative LULC conditions for the second 
experiment.  Both configurations were used to create daily Noah-MP LH flux simulations for the full warm season 
(June – August) for each of the study years (2003-2018).  Note that the LH flux was computed within the Noah-MP 
model using the Penman-Monteith equation [18] such that changes to the LULC affect surface energy exchanges, 
surface radiation, and resistance to water vapor and sensible heat.  Thus, significant modifications to the LH flux 
estimates were expected by updating the LULC fields.  In total, 1472 daily gridded LH flux fields were obtained for 
the default Noah-MP simulations and the updated LULC Noah-MP simulations.  Figure 1b shows the spatial regions 
that were modified by updating these configurations.  The most common update was a shift towards MODIS class 8 
(shrubland), as roughly 17% of the LULC updates were from class 4 (deciduous broadleaf forest) to class 8, roughly 
14% were updates from class 5 (mixed forests) to class 8, and roughly 9% were changed from class 14 (cropland) to 
class 8.  These updates certainly will impact LH flux results as shrubland has dramatically different heat flux 
characteristics than the other categories listed above.   

3. Cluster Analysis Methodology 

Once the Noah-MP simulation fields were obtained, the next step was to quantify the differences in the simulated 
LH flux fields between the two simulations.  The root mean squared difference (RMSD) was computed between the 
default configured Noah-MP LH flux estimates and the simulated LH flux estimates from the updated LULC model 
configuration.  The RMSD values were computed on the full warm season for each year so that a 16-year RMSD time 
series was obtained at each gridpoint, yielding a total of 16 RMSD maps.  Spatial regions of LH flux that were 
consistently adjusted by the updated LULC fields exhibited elevated RMSD; therefore, spatial analysis was needed to 
examine sensitivity to updates in LULC by region.   

These dominant spatial patterns were identified utilizing a traditional hierarchical cluster analysis [19] that 
employed Euclidean distance and Wards minimum variance method for cluster linkages.  Previous work [20] has 
shown that improved clustering is possible if the data are preprocessed using a principal component analysis (PCA) 
[19] approach.  Traditionally, PCA is formulated on a similarity matrix that describes linear covariability among the 
elements within the analysis, either by utilizing the covariance matrix or more commonly the Pearson correlation 
matrix.  Recent studies [13,14,20] have shown that the kernel matrix K associated with support vector machines [8] 
can also serve as a similarity matrix (a technique known as kernel PCA – KPCA) but that this matrix has an advantage 
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over the covariance/correlation matrix since the kernel matrix K describes nonlinear variability among components.  
However, this does present an interpretation challenge since the relationship between K and the original data (here 
the LH flux data) is described by an unknown kernel map function φ.  This means that direct physical interpretation 
of the PC loadings generated from K is not possible (unlike traditional PCA) such that the most common use of KPCA 
in atmospheric sciences is as a preprocessing step to cluster analysis. To assess the value of utilizing KPCA in this 
study, a cluster analysis that did not use the KPCA preprocessing step was compared against the results when using 
this KPCA preprocessing step.  A linear PCA based on the correlation matrix was also tested to quantify the benefits, 
if any, the nonlinearity of KPCA offered to the analysis. 

A metric to quantify the cluster quality was needed to determine what benefits the KPCA preprocessing step offered 
over the control methods.  Two separate measures of cluster quality were employed.  First, the silhouette coefficient 
S [21], a measure of cluster separation and cohesion, was used to quantify the cluster distinctness.  S yields negative 
values for misclustered members and values near 1 for those that are completely distinct (i.e., singular points for each 
cluster).  The mean of the silhouette coefficients for the 16 LH flux RMSD fields was computed for all cluster analysis 
configurations and was scaled by the percentage of correctly clustered members (those whose silhouette value was 
positive).  The second measure of cluster success was a spatial comparison of the individual cluster members with 
their associated composite mean map, which is used for assessing underlying patterns. 

The cluster analyses with varying preprocessing configurations required adjusting multiple tuning parameters to 
obtain the best setup.  One important measure is the number of retained clusters.  This value was carefully selected to 
ensure the yearly data were well distributed among the clusters (i.e., no cluster contained a vast majority of the yearly 
LH flux data).  Additionally, both the KPCA and PCA preprocessing steps required selecting how many PCs to retain.  
Given only 16 years were considered, configurations retaining between 2 and 8 PCs were tested.  Since KPCA does 
not explain variance linearly (unlike traditional PCA) but instead describes variance explained in nonlinear 
hyperspace, standard practice is to consider each number of retained PCs and instead optimize the S and maximize 
the correlation within the clusters.  Finally, the kernel function in KPCA has various tuning parameters for different 
kernels, such as the spread parameter σ in the radial basis function kernel and the degree d in the polynomial kernel.  
In this study, values of σ from 2 to 50 with an interval of 2 were tested, and polynomials with degrees 1-4 were also 
considered (a total of 29 kernel configurations).  All permutations of cluster count, PCs retained, and kernel 
configurations were considered for the KPCA (a total of 609 configurations).  Results are provided below. 

4. Cluster Analysis Results 

The dendrogram from the control cluster analysis (without PCA preprocessing - Figure 2a) showed a clear 3 cluster 
grouping.  The associated S (0.33) was among the highest of the configurations tested in the control phase and was 
associated with an average correlation among cluster members of 0.68.  Notably, the 2009 cluster year was anomalous 
within its cluster (Figure 2a) and this had an impact on the average within-cluster correlation.  Retaining 4 clusters 
resulted in keeping 2009 as its own single-member cluster and increased the average correlation metric among all 
clusters (0.77) while maintaining a similar S (0.32).  Ultimately, since clusters with only one member are not desirable 
for composite analysis, 3 clusters were retained from the control group, resulting in cluster sizes of 3, 3, and 10.  
Interestingly, the linear PCA preprocessed cluster analysis yielded poorer results, as no PCA configuration provided 
an S higher than 0.2 despite modest average correlations (~0.7).  

The KPCA results showed several interesting trends in terms of the sensitivity of the cluster analysis to the 
associated configuration parameters.  First, radial basis function kernels generally had much poorer performance (S < 
0.2) than the polynomial kernel configurations tested.  However, the polynomial kernels consistently produced 
identical clustering to the control group (Figure 2a).  This result suggests that this clustering is likely the best possible 
configuration and that the KPCA preprocessing step offered little benefit to the analysis, a result attributed to the 
smaller sample size of LH flux years in the dataset and the dominance of the mean pattern mentioned above.  Finally, 
the number of retained KPCs had no effect on the resulting clustering (Figure 2b) with the polynomial kernels, and 
the results between the linear kernel and the d = 3 (3rd degree) kernel were nearly identical.  Ultimately, the optimal 
selected KPCA configuration was a linear kernel with 2 KPCs and 3 clusters, though this configuration produced a 
cluster configuration that was identical to the control (Figure 2a).  Thus, for these data KPCA offered no real benefit 
to the cluster analysis, though regular PCA did produce worse results.   
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Fig. 2. (a) Dendrogram from the KPCA-preprocessed Ward’s analysis with a linear polynomial kernel retaining 2 KPCs.  (b) Sensitivity of the S 
metric to the selection of the number of KPCs for a 3-cluster KPCA preprocessed cluster analysis.  Horizontal lines mean no changes to the 

clustering were observed when changing the number of retained KPCs.  The linear kernel produced the highest overall S values and was selected. 

5. Composite RMSD LH Flux Results 

The mean LH flux RMSD field (Figure 3a) for the full study period (Figure 3a) showed that the smallest RMSD 
regions tended to be within the agricultural regions within the LMRAV, with the largest changes primarily located 
along boundaries between bodies of water and land, either with lakes or along the river itself.  Additionally, large 
urban centers (e.g. Memphis, Tennessee, Little Rock, Arkansas, others) were revealed to have essentially no RMSD, 
which is logical given their general lack of LULC change over time and minimal LH flux with the urban canopy.  The 
bias, estimated as the LH flux estimate from the default LULC configuration minus the updated LULC LH flux 
solution, was also computed (Figure 3b).  A vast majority of the domain showed positive bias, meaning the updated 
LULC produced an overall decrease in LH flux estimates across the study region.  This is supported by the global 
median difference in LH flux of 5.2 Wm-2.  The only notable exceptions were primarily along the eastern edge of the 
LMRAV in west-central Mississippi where estimates showed slight negative biases, suggesting elevated LH flux with 
the updated LULC information.  These biases are important when assessing the cluster composite maps. 

The cluster composite maps (Figure 4) showed dramatic differences in the patterns embedded within the 16-year 
RMSD LH flux fields.  Cluster 1 (Figure 4a) primarily showed a near-average pattern across the entire domain, with 
slightly below-average conditions (less than 1 standard deviation) along the Arkansas-Mississippi border.  This cluster 
had the highest member count (10 RMSD LH flux years), showing the prevalence of the mean pattern and the general 
lack of shifts from that mean for most cases.  This result supports the notion that LULC updates resulted in predictable 
changes to the simulated LH flux fields.  Cluster 2, which comprised the first three simulation years, showed 
dramatically elevated LH flux RMSD throughout the entire simulation domain.  This result coupled with the negative 
positive bias suggested the first three simulation years had a dramatic reduction in LH flux with the updated LULC 
Noah-MP simulation.  As all simulations utilized a five-year treadmill spin-up, it is highly unlikely this is a 
consequence of the model configuration but instead is indicative of a shift in land management practices as the study 
period progressed.  Importantly, cluster 2 outlines the heavily agricultural areas of the LMRAV (purple regions in Fig. 
2a) as most dramatically affected by the updated LULC, suggesting this cluster primarily focuses on heavy shifts in 
LH flux in the LMRAV itself.  .  The third cluster (Figure 4c) showed lower LH flux RMSD throughout the simulation  
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Fig. 3. (a) Mean LH flux RMSD (in Wm-2) for all 16 warm seasons.  (b) Median LH flux difference (Wm-2) between the default LULC Noah-MP 
simulation and the updated LULC Noah-MP simulations for the full 16 warm seasons 

region, except for the region just east of the LMRAV, meaning these simulation years were primarily associated with 
little to no LH flux modification by the updated LULC conditions.  Notably, the results revealed a region of increased 
sensitivity slightly east of the cropland region in the LMRAV in northern Mississippi and southwestern Tennessee.  
This suggests that the small modifications to the LH flux in the LMRAV itself contributed to higher sensitivity in LH 
flux east of the region which supports the conclusion that updated LULC conditions within the Noah-MP can impact 
adjacent downstream regions.  Clearly, a meteorological link exists between the LMRAV and points east, such that 
land management practices in the LMRAV agriculture could be affecting warm season precipitation downstream, 
which is an important result for agriculture in the study region.   

In addition to isolating spatial structures within the data, the clusters revealed important LH flux sensitivities by 
LULC type.  Though in cluster 1, no anomaly exceeded +/- 1 standard deviation, the results in clusters 2 and 3 revealed 
large areas with anomalously high or low sensitivity to the updated LULC information.  In cluster 2, the highest 
percentage of points that experienced RMSD at least 1 standard deviation above the mean were cropland points that 
did not change type with the LULC update (~16.8%).  This result is consistent with the previous conclusion regarding 
the dramatic sensitivity in the LMRAV itself with the cluster 2 member years.  Other larger LULC changes that 
resulted in elevated RMSD for cluster 2 included shifts from class 4 (mixed dryland/irrigated cropland and pasture) 
to class 8 (shrubland), which comprised roughly 4.6% of the elevated RMSD gridpoints, and from class 4 to class 5 
(cropland/grassland mosaic).  These same regions showed a dramatic decrease in LH flux with the LULC updates, 
which were consistent with expectations as shrubland should produce greater sensible heat flux than cropland due to 
the higher vegetation density of agricultural areas. This result supports the notion that recent LULC modifications are 
having an important effect on LH flux in the LMRAV, which likely translates to modifications in the warm-season 
precipitation climatology as well.  In cluster 3, most regions showed little to no modification as RMSD anomalies 
were highly negative.   As expected, most LULC regions with highly negative anomalies (values < -1) showed 
consistent LULC types throughout the study period, with a large percentage (~17%) of points again being associated 
with cropland that was not modified over the study period.  This result suggests that the cluster years portrayed here 
were consistently low with regards to LH flux.  Interestingly, the member years in this cluster (2006, 2008, 2009) 
were anomalously low precipitation years in [2], and this lack of precipitation likely contributed to reduced LH flux 
as the LULC type had minimal impact (hence the lower RMSD anomaly values). Overall, some important sensitivities 
in LH flux, and thus warm-season precipitation, were observed, and future simulation years can better support the 
results seen in these simulations and solidify the relationships between LH flux and LULC. 



	 Andrew Mercer  et al. / Procedia Computer Science 185 (2021) 1–8� 7
 Andrew Mercer, et al. / Procedia Computer Science 00 (2021) 000–000  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. (a) Composite mean LH flux RMSD for cluster 1 (panel a), cluster 2 (panel b), and cluster 3 (panel c).  Shading are expressed in standard 
anomalies (numbers of standard deviations of RMSD above or below the mean). 

6. Discussion and Conclusions 

The results presented herein demonstrate the importance of updated LULC to LH flux estimates (used as a proxy 
for convection driving warm-season precipitation processes) from Noah-MP simulations.   Most study years showed 
consistent impacts from updating the LULC fields (seen in the mean field, Figure 3a) as 10 of the 16 study years were 
included in the near-mean cluster 1 composite (Figure 4a).  Other member years demonstrated large sensitivity to 
updated LULC, especially over the LMRAV region (Figure 4b), or showed essentially no sensitivity except east of 
the LMRAV region.  The composite results demonstrated a clear inverse correlation between the LMRAV itself and 
regions just east of the LMRAV in both cluster 2 and 3’s composites. This suggests an important linkage between LH 
flux over the LMRAV and points downstream and supports further investigation into the physical links between 
updated LULC in the LMRAV due to anthropogenic land use activities.  This will require additional investigation and 
simulations to address these impacts more thoroughly.   

There were some limitations to this study.  The scope of the problem considered herein was massive but was still 
limited to utilizing a proxy variable (LH flux) for estimating warm-season precipitation.  The KPCA preprocessing 
offered no difference in clustering, though it is expected that KPCA would offer important new insight with additional 
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study years.  Future studies will incorporate additional study years, LULC modifications for the Noah-MP, and 
eventually formally coupling the atmospheric WRF model with the Noah-MP simulations to obtain true estimates of 
LH flux and precipitation with two-way surface-atmosphere feedbacks.  Overall, this study demonstrated that 
sensitivities, while generally minor, did result from updated Noah-MP simulations and that these sensitivities were 
most demonstrative in proximity to the LMRAV and points east. 

Acknowledgements 

This work was supported by NOAA award #NA19OAR4590411.  We wish to thank the reviewers for their careful 
review of our manuscript. 

References 

[1] Dyer, Jamie, and Andrew Mercer. (2013) “Assessment of spatial rainfall variability over the lower Mississippi River Alluvial Valley.” Journal 
of Hydrometeorology, 14: 1826-1843. 

[2] Ouyang, Ying, Jiaen Zhang, Gary Feng, Yongshan Wan, and Theodor Leininger. (2020) “A century of precipitation trends in forecast lands of 
the Lower Mississippi River Alluvial Valley.” Scientific Reports, 10: 12802. 

[3] Diem, Jeremy. (2006) “Synoptic-scale controls of summer precipitation in the Southeastern United States.” Journal of Climate, 19: 613-621.  
[4] Dyer, Jamie. (2011) “Analysis of a warm-season surface-influenced mesoscale convective boundary in northwest Mississippi.” Journal of 

Hydrometeorology, 12: 1007-1023. 
[5] Aligo, Eric, William Gallus, and Moti Segal. (2007) “Summer rainfall forecast spread in an ensemble initialized with different soil moisture 

analyses.” Weather and Forecasting, 22: 299-314. 
[6]  Ebert, Elizabeth. (2001) “Ability of a poor man’s ensemble to predict the probability and distribution of precipitation.” Monthly Weather 

Review, 129: 2461-2480. 
[7] Mercer, Andrew, Jamie Dyer, and Song Zhang. (2013) “Warm-season thermodynamically-driven rainfall prediction with support vector 

machines.” Procedia Computer Science, 20: 128-133. 
[8] Cristianini, Nello, and John Shawe-Taylor. (2000) An Introduction to Support Vector Machines and other Kernel-Based Learning Methods.  

Cambridge, UK, 189. 
[9] Skamarock, William, Joseph Klemp, Jimy Dudhia, David Gill, Zhiquan Liu, Judith Berner, Wei Wang, Jordan Powers, Michael Duda, Dale 

Barker, and Xiang-Yu Huang. (2019) A description of the Advanced Research WRF version 4.  NCAR Technical note NCAR/TN-556+STR, 
145. 

[10] Santanello, Joseph, Patricia Lawston, Sujay Kumar, and Eli Dennis. (2019) “Understanding the impacts of soil moisture initial conditions on 
NWP in the context of land-atmosphere coupling.”  Journal of Hydrometeorology, 20: 793-819. 

[11] Gochis, David, Michael Barlage, Ryan Cabell, Matthew Casali, Aubrey Dugger, Katelyn FitzGerald, Molly McAllister, James McCreight, 
Arezoo Rafiee Nasab, Laura Read, Kevin Sampson, David Yates, and Yongxin Zhang.  (2020) The WRF-Hydro modeling system technical 
description (version 5.1.1).  NCAR Technical Note, 107. 

[12] Niu, Guo-Yue, Zong-Liang Yang, Kenneth Mitchell, Fei Chen, Michael Ek, Michael Barlage, Anil Kumar, Kevin Manning, Dev Niyogi, 
Enrique Rosero, Mukul Tewari, and Youlong Xia. (2011) “The community Noah land surface model with multiparameterization options (Noah-
MP): 1. Model description and evaluation with local-scale measurements.”  Journal of Geophysical Research, 116, D12109. 

[13] Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller. (1998) “Nonlinear component analysis as a kernel eigenvalue problem.  
Neural Computation, 10: 1299-1319. 

[14] Mercer, Andrew, and Michael Richman. (2012) “Assessing atmospheric variability using kernel principal component analysis.” Procedia 
Computer Science, 12: 288-293. 

[15]  Yang, Zong-Liang, Guo-Yue Niu, Kenneth Mitchell, Fei Chen, Michael Ek, Michael Barlage, Laurent Longuevergne, Kevin Manning, Dev 
Niyogi, Mukul Tewari, and Youlong Xia. (2011) “The community Noah land surface model with multiparameterization options (Noah-MP):  
2. Evaluation over global river basins.”  Journal of Geophysical Research, 16: D12110. 

[16] Cai, Xitian, Zong-Liang Yang, Cédric David, Guo-Yue Niu, and Matthew Rodell. (2014) “Hydrologic evaluation of the Noah-MP land surface 
model for the Mississippi River Basin.” Journal of Geophysical Research Atmosphere, 119: 23-38. 

[17] Broxton, Patrick, Xubin Zeng, Damien Sulla-Menashe, and Peter Troch. (2014) “A global land cover climatology using MODIS data.” Journal 
of Applied Meteorology and Climatology, 53, 1593-1605. 

[18] Bonan, Gordon. (2008) Ecological Climatology: Concepts and Applications, 2nd Ed., Cambridge, U.K., 550. 
[19] Wilks, D. (2011) Statistical Methods in the Atmospheric Sciences.  Academic Press, Burlington, MA, 704. 
[20] Richman, M., and I. Adrianto. (2010) “Classification and regionalization through kernel principal component analysis.”  Physics and Chemistry 

of the Earth, 35: 316-328. 
[21] Rosseeuw, P. (1987) “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.”  Journal of Computational and 

Applied Mathematics, 20: 53-65. 


